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ABSTRACT

Microscope examination of Gram stained clinical specimens
is used for aiding the diagnosis of patients with infectious
diseases. In high volume pathology laboratories, this man-
ual microscopy examination is considered time consuming
and labour intensive. Unfortunately, despite the great bene-
fits offered from the application of Computer Aided Diagno-
sis (CAD) systems, to our knowledge, the highest automa-
tion stage for Gram stained slide analysis is only at the pre-
analytical process. This paper takes the first steps towards the
application of computer vision to direct smear, Gram stained
images. To that end, we present a novel Gram stain image
dataset. In addition, we also propose a multiple covariance
approach for leukocyte and epithelial cell detection in Gram
stain images. Each covariance matrix represents a particu-
lar image region characterising the cell’s deformed structure.
As covariance matrices form points on an Symmetric Posi-
tive Definite (SPD) manifold, the traditional Euclidean-based
analysis cannot be used. As such, we first map the manifold
points into the Reproducing Kernel Hilbert Space (RKHS).
The analysis is done via a novel kernel similarity function
that allows comparison between sets of covariance matrices.
The proposed approach is contrasted, in the proposed dataset,
with two recent state of the art methods in pedestrian detec-
tion: Histogram Of Gradient (HOG) and the traditional single
covariance matrix approach. We found that the proposed ap-
proach outperformed both of these methods.

Index Terms— Gram stain analysis, direct smears, Cell
detection, Riemannian manifolds, Symmetric Positive Defi-
nite Matrix group

1. INTRODUCTION

Recently there has been growing interest in applying image
analysis to pathology test images [1, 2, 3, 4]. More precisely,
Computer Aided Diagnosis (CAD) systems were developed
to automatically provide analysis based on the input images.
Results produced by these methods can be used to support the
scientists’ manual/subjective analysis; making the test results
more reliable and consistent. In microbiology, it is known
that microscopic examination of Gram stained preparations
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Fig. 1. Some detection bounding box results from our pro-
posed approach. Note that the cells of interest such as leuko-
cytes and epithelial cells have extreme variability in shapes.
In some cases, some non-cell objects also have similar appear-
ance to these cells. Our proposed approach is able to address
these variabilities.

of clinical specimens is valuable for physicians who are man-
aging patients with infectious diseases [5]. This is due to the
fact that it is a rapid and cost effective procedure.

The Gram staining protocol is a staining procedure ap-
plied to tissue samples on glass slides, which facilitates classi-
fication of cells under bright field microscopes as either Gram
positive or Gram negative [6]. This classification aids the sci-
entist in estimating the abundance of several cell classes in
the smear. The relative population of white blood cells and
bacteria cells, together with epithelial cells gives an efficient
first diagnosis of bacterial infections.

For pathology laboratories handling large volumes of
patient samples, the manual examination of each slide sig-
nificantly consumes valuable time of scientists. These issues
could be addressed using CAD systems designed for cell
recognition with the detection statistics used for population
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estimation. Unfortunately, despite the significant benefits
offered by CAD systems, to the best of our knowledge the
highest automation stage for Gram stained slide analysis is
only at the pre-analytical process [6].

To that end, in this study we present an application of
computer vision to the area of Gram stained direct smear im-
ages. In particular, we confine ourselves to the problem of ep-
ithelial and white blood cell detection in Gram stain images.
Whilst, the white blood cells (leukocytes) are an important
parameter to infer possible bacterial infection, the epithelial
cells are considered for determining the specimen quality. A
large number of white blood cells could indicate that the pa-
tient is having a severe infection. A large concentration of
white blood cells could also be used as a proxy to search for
bacteria which has a significantly smaller size. On the other
hand, a large number of epithelial cells could mean that the
specimen may not have been properly taken.

In this work, we propose a novel benchmarking Gram
stain direct smear image dataset which has three benefits:
(1) To generate interest within the community and thus ad-
vance the field; (2) To assist the development of novel com-
puter vision techniques to address unique problems presented
in this application domain; (3) To provide a general and mean-
ingful platform for practitioners in this field for comparing
their algorithms.

In the second contribution, we present evaluation results
on two state-of-the-art of pedestrian detection methods. We
opt to use pedestrian detection as cells, like pedestrians, can
be considered as deformable objects. One of the differences
between cells and pedestrians is that for cells, the within class
deformation has significant variability with respect to relative
positioning and orientation. Fig. 1 presents some sample im-
ages and results of our proposed approach. This is especially
true for Gram stained direct smear images due to the fact that
when the smears are prepared the scientists manually swab
the specimen on the glass slide.

In light of this fact, we argue that it is more appropriate
to address this problem by modelling the cell images as co-
variance matrices, which can be interpreted as points over the
Symmetric Positive Definite (SPD) manifolds. The Covari-
ance of features approach has been proven to be effective in
pedestrian detection [7]. As shown in [7], this modelling is
more powerful than the Euclidean features such as Histogram
Oriented Gradient (HOG) features. Unfortunately, we found
that the existing approaches, mainly focussing on a single co-
variance features (i.e. one image is represented with one co-
variance matrix), is not adequate for our problem due to the
high within class variability in the cells of interest. As such
we propose a multiple covariance approach which encodes
much richer information to characterise a cell. In our eval-
uation we found that the proposed multiple covariance ap-
proach outperformed both the traditional single covariance
approach [7] and one of the state-of-the-art approaches for
pedestrian detection [8].

We continue our paper as follows. We first described the
task in Section 2. The proposed benchmarking platform is
described in Section 3. Section 4 elaborates on our proposed
multiple covariance approach. We present our evaluation re-
sults in Section 5. Section 6 discusses main findings and fu-
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ture directions.

2. PROBLEM DESCRIPTION

Given an image I, the goal is to classify the image into the fol-
lowing classes C = {non-cell, epithelial, leuokocyte}. Note
that the number of non-cell exemplars is much higher than the
other two classes. This means, we could pose the problem in
two different forms: (1) Cell vs non-cell detection; (2) Ep-
ithelial cell detection and Leukocyte detection. In this work,
we consider these two forms.

3. GRAM-STAINED SMEARS IMAGE DATASET

To address the evaluation of different recognition methods
on Gram stained smears, the SNP-Gramstain dataset was
created. The dataset contains 150 colour images of anony-
mous Gram stained smears that were collected at Sullivan
Nicolaides Pathology (SNP) Australia. The dataset will
be available at http://www.itee.uqg.edu.au/sas/
datasets.

The images were taken using a Pixel link coloured cam-
era mounted on a motorised microscope at x63 magnification
and with a resolution of 2048x1536 pixels in uncompressed
TIF format. From the 150 images, positive and negative ex-
amples of leukocyte and epithelial cells were cropped, with
some examples shown in Fig. 1. The 8129 cropped examples
are composed of: (1) 586 leukocytes; (2) 162 epithelial cells;
(3) 2471 hand-labelled negative exemplars and (4) 4910 au-
tomatically extracted negative exemplars. The automatically
generated negative exemplars were extracted from 11 of the
dataset images, which contained no cells of interest. From
these images, square crops were extracted in a grid pattern
at a wide range of scales, with wider spacing between larger
windows to reduce overlap. The hand labelled negative exam-
ples were selected to present difficult training and testing ex-
emplars. Negative examples focus on artefacts or background
materials that classifiers might have difficulty with. The neg-
ative examples also contain leukocyte sized windows taken
on the border of large epithelial cells, to help train and test
classifiers ability to avoid false-positive leukocyte detections.

4. PROPOSED APPROACH

As mentioned, our proposal is based on the work proposed
in [7]. The work represents an image by a positive definite co-
variance matrix. Covariance matrices belong to the Symmet-
ric Positive Definite (SPD) group. These matrices can be in-
terpreted as points over Riemannian manifolds; thus we name
the manifolds as SPD manifold. We first present an overview
of the SPD manifold, the traditional single covariance matrix
approach, and then our proposed approach is described.

4.1. Symmetric Positive Definite Manifold

Riemannian manifolds are smooth and differentiable mani-
folds embedded in a higher dimensional space. In general,
the manifold topology is assumed to be either unknown or
complex. Thanks to the fact that Riemannian manifolds are
smooth and differentiable, it becomes possible to study their



surface by using differential geometry tools. In other words,
one can derive the function mapping from a location on the
manifold onto its corresponding tangent space by studying
the derivative operator on the location. In fact, the geodesic
distance (i.e. the true distance between two points on the
manifold) is generally derived via tangent space. We refer
interested readers to [9, 7] for a full treatment of Riemannian
manifolds.

The geodesic distance between two points X1, Xo €
SYM, in the SPD manifold is defined via [7].

1
2

dy(X1, X 5) = trace {1ogm2(X1_%X2X1_%)} (1

where X ; and X 5 are the d x d SPD matrices; logm(-) is the
matrix logarithm.

Often it is useful to study the SPD manifold by first map-
ping the points into the Reproducing Kernel Hilbert Space
(RKHS) to significantly improve the accuracy [10, 11, 12]. In
this work, we opt to use the Log-Euclidean kernel due to its
high accuracy and low computational complexity [12].

ke(Xl,Xg) = H logm(Xl) - logm(X2)||F (2)

where k. (-) is the Log-Euclidean kernel similarity function;
and || - || is the Frobenious norm. Once the manifold points
have been mapped into the RKHS, we employ the Kernel
SVM to build the detector.

4.2. Single Covariance Approach

To represent an image I as a covariance matrix X, for each
pixel location in I we first extract an 11 dimensional feature
vector composed by.

3
where u, v are the pixel coordinates; I}, , is the grey value
of red channel at location (u,v); I , is the grey value of
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The 11 x 11 covariance matrix X is then computed once
the feature vectors are extracted from every pixel location.
This becomes the representation of I over the SPD manifold
space.

4.3. Multiple Covariance Approach

Instead of extracting only one covariance matrix, we first di-
vide an image into three regions characterising a cell: (1) in-
ner region which encodes the cell content; (2) outer region
that contains the information between the cell cytoplasm and
background; and (3) the whole region which includes region
(1) and (2). More precisely, given an image I, we set the
inner region to be 7 times of the size I, 0 < 7 < 1. For
instance if the size of I is 100 x 64 and 7 = 0.5, then the
inner region size is 50 x 32. The outer region is the remaining
region in the image that does not belong to the inner region.
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Fig. 2. The illustration on how the regions are divided. Inner
region is always located at the center with size 7 times smaller
than the whole region.

Fig. 2 sketches how the three regions are divided. Our pro-
posed approach is inspired from the Cell Pyramid Matching
(CPM) descriptor which was proposed to address cell classifi-
cation in fluorescence images [1]. Unlike the CPM descriptor
however, we extract a covariance descriptor from each region.
Let {X7]}7=3, {X5}"=3 be the three covariance features ex-
tracted from the three regions of images I; and Is, respec-
tively. We note that it is not trivial to determine the similarity
between these two points. Henceforth, we propose the modi-
fication of Log-Euclidean kernel as follows.

ke ({XTHZTAXENZD) = 0({XT120) - ¢({X£}Ii§’)|\(F4)
where k. (+) is the proposed modified Log-Euclidean and
@(+) is defined as the function that concatenates the matrix

logarithms of individual region.
S({X7}20) = [logm(X ) logm(X7) logm(X7)]  (5)

As derived from the original Log-Euclidean kernel, the kernel
kme is always symmetric and positive semi-definite, thus it is
a Mercer Kernel.

5. EVALUATION OF RESULTS

We contrasted our proposed approach, denoted Multiple Co-
variance with Kernel SVM (MC-KSVM), to two recent state-
of-the-art approaches in the pedestrian detection domain:
(1) the Histogram of Oriented Gradient(HOG) with Linear
SVM [8], denoted HOG-SVM and (2) the Single Covariance
approach in conjunction with Kernel SVM (SC-KSVM) [7].
We note, that for a fair comparison, we used Kernel SVM for
SC-KSVM with kernel similarity function defined in Eqn. 2.
Both SC-KSVM and MC-KSVM employed the same features
described in Eqn. 3. Therefore, the only difference between
SC-KSVM and MC-KSVM is the fact that MC-KSVM em-
ploys multiple covariance matrices to represent an image.
The detection rates reported on the dataset were all
recorded with a False Positive Rate (FPR) of 10~ across
the dataset. Note that, here cropped cell images are used.
Thus, the performance is not computed based on the overlap
of the bounding boxes. As the dataset contains a significant
fraction of difficult negative exemplars, the false positive rate
is expected to remain relevant when performing sliding win-
dow detection in the full non-cropped images. Evaluation
was done using 10-fold cross validation on each of the la-
belled cropped images. We followed the approach used in [8]
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Fig. 3. Comparisons between MC-KSVM (proposed) and
SC-KSVM on leukocyte detection.

Method Epithelial | Leukocytes | Both
HOG-SVM [8] 61.3% 65.5% 50.7%
SC-KSVM [7] 71.3% 87.9 79%
MC-KSVM(Proposed) | 89.6% 90.4 % 86.6 %

Table 1. Detection percentage at 10~3 False positive Rate.
HOG-SVM: Histogram Oriented Gradient with SVM; SC-
KSVM: Single Covariance approach with Kernel SVM,
please refer to text for detail descriptions; MC-KSVM: Mul-
tiple Covariance approach with KSVM (proposed approach).

in order to produce the detection rates with the designated
FPR. For the sake of brevity, from now on, we will refer to
“detection rates with FPR of 1073 as simply the “detection
rates”. All the hyperparameters were determined from the
cross-validation set.

Table 1 shows the detection rate of each detection method,
for the detection of leukocytes, epithelial and both types of
cell together. It can be seen that the multiple covariance
method achieves the highest detection rates for every cell
type. HOG-SVM achieves comparatively poor performance
on the recognition task. The performance of HOG-SVM
can be attributed to the highly variable shape of the cells,
where HOG attempts to learn a rotationally variant structure.
Single covariance SC-SVM features achieve respectable per-
formance. However its performance is limited to the noisy
environments where the features cannot adequately encode
the cells.

Fig. 3 shows an example of the sliding window SVM
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Fig. 4. Comparisons between MC-KSVM (proposed) and
SC-KSVM on epithelial cell detection.

confidence heatmap and detection bounding box for leuko-
cyte detection using SC-SVM and MC-KSVM methods. By
visual examination, the MC-KSVM method yields a cleaner
heatmap than SC-KSVM, with inter cell detections sup-
pressed. Fig. 4 shows an Epithelial detection example, similar
to Fig. 3. For epithelial detection, the improvement of MC-
KSVM over SC-KSVM is more significant. The SC-KSVM
heatmap has a strong spurious detection in the space between
epithelial cells, that is not present in the MC-KSVM heatmap.
This increased difference is attributed to the greater variabil-
ity in epithelial cell shape, where the additional structure of
MC-KSVM allows for clearer discrimination.

6. MAIN FINDINGS AND FUTURE DIRECTION

This work tackles the problem of Leukocyte and Epithelial
cell detection on Gram-stained smear images. To the best of
our knowledge, this is one of the first attempts to push the
automation stage in this field, which is currently only at the
pre-analytical stage. We first create a benchmarking dataset
for this purpose. Then, a novel cell detection approach was
proposed, making use of multiple covariance matrices for rep-
resenting a cell image. As covariance matrices form a man-
ifold space in the SPD manifolds, one cannot use the tradi-
tional Euclidean-based techniques. Therefore, we opt to use
kernel analysis. To that end, a novel kernel similarity func-
tion which measures the similarity between two set of multi-
ple covariance matrices is proposed. We contrasted the pro-
posed approach to recent state-of-the-art approaches in pedes-
trian detection: HOG-SVM and the traditional single covari-
ance approach. Evaluation results found the proposed method
performed best on each of the cell classes tested. Future
work aims to expand the dataset to include a greater quan-
tity of samples and to extend the detection analysis to the
bacterial cells. We also plan to further reduce the computa-
tional complexity using random projection methods described
in [13, 14]
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