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Abstract

A convenient way of analysing Riemannian manifolds is to
embed them in Euclidean spaces, with the embedding typi-
cally obtained by flattening the manifold via tangent spaces.
This general approach is not free of drawbacks. For ex-
ample, only distances between points to the tangent pole
are equal to true geodesic distances. This is restrictive and
may lead to inaccurate modelling. Instead of using tangent
spaces, we propose embedding into the Reproducing Kernel
Hilbert Space by introducing a Riemannian pseudo kernel.
We furthermore propose to recast a locality preserving
projection technique from Euclidean spaces to Riemannian
manifolds, in order to demonstrate the benefits of the
embedding. Experiments on several visual classification
tasks (gesture recognition, person re-identification and tex-
ture classification) show that in comparison to tangent-
based processing and state-of-the-art methods (such as
tensor canonical correlation analysis), the proposed ap-
proach obtains considerable improvements in discrimina-
tion accuracy.

1. Introduction

Recently, non-Euclidean geometry, such as Riemannian
manifolds, has opened new ways to interpret and analyse
image as well as video data [ 14, 18, 19, 25, 26, 28]. The cu-
rious mind might ask what are the motivations and advan-
tages of switching from the well-defined Euclidean spaces
to curved, Riemannian spaces? A short answer to this ques-
tion would be — the features and visual models often do not
lie on an Euclidean space. In other words the underlying
distance function on the space is not the usual Euclidean L,
norm. As such, Riemannian manifolds might be an appro-
priate way of inference in various regimes of visual compu-
tation, especially the identification paradigm.

In this paper we consider the space formed by non-
singular covariance matrices, which are symmetric positive
definite matrices. Such matrices form a connected Rieman-
nian manifold, not an Euclidean space [28]. Covariance ma-
trices as region descriptors were first introduced by Tuzel et
al. [27] and since then have been employed successfully for

433

object tracking [20], pedestrian detection [28], action recog-
nition [ 1] and medical imaging [19].

Prior Work. Inference on Riemannian manifolds can
be achieved by embedding the manifolds in higher dimen-
sional Euclidean spaces, which can be considered as flatten-
ing the manifold. In the literature, the most popular choice
for embedding the manifold is through considering tangent
spaces [ 11, 20, 28]. Tuzel et al. [28] tackled the problem of
pedestrian detection by designing a LogitBoost classifier [8]
over Riemannian manifold spaces. Due to the curvature of
the space, Tuzel et al. designed each weak classifier on an
appropriate tangent space. As such, the inference on the
manifold was made through several tangent spaces. Sub-
barao et al. [25] reformulated the mean shift algorithm [4]
over non-linear manifolds. In particular they showed that
the mean shift can be seen as an iterative approach that
switches between manifold and tangent spaces. For action
classification, Guo et al. [1 | ] proposed to a sparse-based so-
Iution on Riemannian manifolds by mapping all the points
on the manifold to the tangent space of the identity matrix.

Flattening the manifold through tangent spaces is not
free of drawbacks. For example, only distances between
points to the tangent pole are are equal to true geodesic
distances. This is restrictive and may lead to inaccurate
modelling. A recent alternate school of thought consid-
ers embedding Grassmann manifolds (a special case of
Riemannian manifolds) into Reproducing Kernel Hilbert
Spaces (RKHS) [24], through the use of dedicated Grass-
mann kernel functions [12, 14]. This in turn opens the door
for employing many kernel-based machine learning algo-
rithms [24].

Contributions. There are two main novelties in this
work. Firstly, based on the Riemannian geodesic distance,
we propose a Riemannian pseudo kernel. Unlike the ker-
nels used in [12, 14], the proposed kernel is not restricted
to any special class of Riemannian manifolds. Secondly,
having a kernel at our disposal, we exploit RKHS theory to
recast a locality preserving projection method [15] from Eu-
clidean vector spaces to Riemannian manifolds. Lastly, we
apply the proposed approach to 3 distinct visual classifica-
tion tasks: recognition of actions, textures and pedestrians.



We continue the paper as follows. Section 2 provides a
brief overview of Riemannian manifolds, which leads to the
proposed Riemannian pseudo kernel in Section 3. In Sec-
tion 4 we recast Euclidean locality preserving projection to
Riemannian manifolds. In Section 5 we compare the perfor-
mance of the proposed method with previous approaches on
the abovementioned visual classification tasks. The main
findings and possible future directions are summarised in
Section 6.

2. Riemannian Geometry

In this section we briefly review Riemannian geometry,
with a focus on the space of symmetric positive definite ma-
trices. Formally, a manifold is a topological space which is
locally similar to an Euclidean space [28]. Intuitively, we
can think of a manifold as a continuous surface lying in a
higher dimensional Euclidean space.

The tangent space, T'x at X, is the plane tangent to the
surface of the manifold at that point. The tangent space can
be thought of as the set of allowable velocities for a point
constrained to move on the manifold. The minimum length
curve connecting two points on the manifold is called the
geodesic, and the distance between two points X and Y is
given by the length of this curve.

For a Riemannian manifold, geodesics (on the manifold)
are related to the tangents in the tangent space. For each
tangent A € T'x, there exists a unique geodesic starting at
X with initial velocity A. Two operators, namely the expo-
nential exp 5 and logarithm maps logx = expy', are defined
over the Riemannian manifolds to switch between manifold
and tangent space at X. More specifically, the exponen-
tial operator maps A to the point Y on the manifold. The
property of the exponential map ensures that the length of
A is equivalent to the geodesic distance between X and Y.
The logarithm map is the inverse of the exponential map
and maps a point on the manifold to the tangent space T'x .
The exponential and logarithm operators vary as point X
moves. These concepts are illustrated in Fig. 1.

Figure 1. [Illustration of the tangent space 1T'x at point X on
a Riemannian manifold M. A covariance matrix can be inter-
preted as point X in the space of symmetric positive definite ma-
trices. The tangent vector A can be obtained through the loga-
rithm mapping, ie. A = logx (Y'). Every tangent vector in Tx
can be mapped back to the manifold through the exponential map,
ie. expx (A) =Y. The dotted line shows the geodesic starting at
X and ending at Y.
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Symmetric positive definite matrices with size d x d,
eg. non-singular covariance matrices, can be formulated as
a connected Riemannian manifold (Sym;)). For Sym;; the
exponential and logarithm maps are defined as:

1 _1 _1 1
expx (y) = X26Xp(X 2yX 2)X2 )

logx (Y) 2

In (1) and (2), exp (-) and log (-) are matrix exponential
and logarithm operators, respectively. For symmetric pos-
itive definite matrices they can be computed through Sin-
gular Value Decomposition (SVD). More specifically, let
X = UZUT be the SVD of the symmetric matrix X, then

X2 log (X’%YX’%) X3

3)
“

In the above equations, exp (X) and log (X) are two diag-
onal matrices where the diagonal elements are respectively

equivalent to the exponential or logarithms of the diagonal
elements of matrix 3.

exp (X))
log (X))

Uexp(Z)U”
Ulog (2)UT

3. Riemannian Kernel

By considering the geodesic distance between Rieman-
nian points, we propose the following pseudo kernel:
ka (X,Y) = exp{-0 'dc (X,Y)} )
where d¢ (X,Y) =trace {log2 (Xf%YXf%) } for Sym}.
Under certain conditions the proposed kernel be-
comes a true kernel (ie. a positive definite kernel
function on M). Specifically, the kernel matrix
K = [kij]; kij = ks (X;, X ;) is positive definite iff
VITKV > 0,VV € R". Expanding VTKV yields:

VIRV = (Zé_l vi>2 -2 Zn: > vy 42 Zn: > vk
= i=1 j#i i=1 j#i
= (Z:;l 'U7;>2 +2 ZZU{UJ‘ (kiyj — 1) (6)
i=1 j#£i
Note that k;; € [0,1]. For values of v; and v; where

[0’

min (v;v;(ks,; — 1)) = — v;v; holds, we obtain:

min (V7RV) = (3" vi)Q - 2i S v (D)

i=1 j#i

As the right-hand side of Eqn. (7) is positive for v; # 0,
K would be a positive-definite matrix.

While the proposed pseudo kernel is not guaranteed to
always be a positive definite function, experiments in Sec-
tion 5 indicate that it can nevertheless still be quite useful.
We note that it is possible to convert pseudo kernels into
true kernels, as discussed in [3].



4. Riemannian Locality Preserving Projection

Given an affinity graph in a vector space, the purpose of
locality preserving projections is to minimise an objective
function that incurs a heavy penalty if neighbouring points
in the original space are mapped far apart in the transformed
space [15]. This problem can be solved through a gener-
alised eigen-analysis framework. In the following text, we
formulate the locality preserving projections over Rieman-
nian manifolds. We call the resulting algorithm Riemannian
Locality Preserving Projection (RLPP).

Given N points X = {X1, X5, -+, X n} from the un-
derlying Riemannian manifold M, the local geometrical
structure of M can be modelled by building a similarity
graph W. The simplest form of W is a binary graph ob-
tained based on the nearest neighbour properties of Rieman-
nian points:

e c-neighbourhoods. Two nodes are connected if the
geodesic distance between them is less than a thresh-
old.

e k nearest neighbours. Two nodes are connected by an
edge if one node is among the k£ nearest neighbours of
the other node.

We note that more complex affinity graphs can also be
used to encode distances between points on Riemannian
manifolds [24]. Our aim is to find a mapping from M to
M’ ie. a: X; — Y, to preserve the local geometry of the
manifold. A suitable transform would place the connected
points of W as close as possible, while being flexible to
some extent for the unconnected points of W. Such a map-
ping can be described by optimising the following objective
function:

f = min % ZJ (Y=Y ;) W(i,j) @®)

Eqgn. (8) punishes connected neighbours if they are
mapped far away in M’. Assume that points on the man-
ifold are implicitly known and only a measure of similarity
between them is available through a Riemannian kernel, de-
noted as k;; = (X, X ;).

Confining the solution to be linear, ie. aZ:Z;V: Laii X,
we have:

Yi=((on, X:), (@2, Xi), -, (o, Xi))" (9)

By defining A;=[a;1,a12, - ain]T and K= [k, kiz, - - kin] T
it can be shown that (o, X;) = AT K ;. Hence Eqn. (8) can
be simplified to:

% Z” (Y- Yj)2 W (i, j)

S ATK KT ATW (i) =Y, AT K KT ATW (i, )
ATKDKTA — ATKWKT A

ATKLKTA

10)
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Algorithm 1. Pseudocode for training Riemannian Locality
Preserving Projection (RLPP).
Input:

e Training set X = {X 1, X, -+, X n} from the underlying
Riemannian manifold.

e The Riemannian heat kernel function k;;, for measuring the
similarity between two points on a Riemannian manifold.

Processing:

1.
2.

Compute the Gram matrix [K],; for all X, X ;

Compute the similarity graph, its degree and Laplacian matri-
ces, W, D, and L respectively.

Solve the minimisation problem in Eqn. (11) by eigen de-
composition to obtain A. The r smallest eigenvectors of the

T
KDK__ form A.

Rayleigh quotient

Output:

e The projection matrix A = [A1|Az|--|A,], where each A;
is an eigenvector found in step 3 above; the eigenvectors are
sorted in an ascending manner according to their corresponding

eigenvalues.

where A = [A1|A2| s ‘AT], K= [K1|K2‘ s |KN] and
L = D — W is the Laplacian matrix. The minimum of (10)
can be found by imposing the constraint ATKDK”A = 1
[15, 30]. Hence we are interested in solving

arg min ATKLKT A

st. ATKDKTA =1 11

The solution of (11) can be found through the following
generalised eigenvalue problem:

KLKTA = \KDKTA (12)

Algorithm 1 outlines the locality preserving projection
on Riemannian manifolds. The algorithm uses the points
on the Riemannian manifold implicitly (ie. via measur-
ing similarities through a kernel) to obtain a mapping,
A =[A1]As|---|A,], that preserves a measure of local sim-
ilarity.

Upon acquiring the mapping A, the matching prob-
lem over Riemannian manifolds is reduced to classifica-
tion in vector spaces. More precisely, for any query sam-
ple X,, a vector representation using the kernel function
and the mapping A is acquired, ie. V, = ATK,, where
K,=((X1,X,),(X2,X,), ,(Xn,X,)". Similarly,
gallery points X ; are represented by » dimensional vectors
V,=ATK, and classification methods such as Nearest-
Neighbours or Support Vector Machines [2] can be em-
ployed to label X ,.
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Figure 2. Comparison of the proposed RLPP approach with

tangent-based analysis on synthetic data.

5. Experiments

We start this section by evaluating the performance of the
proposed RLPP method' on synthetic data. We then com-
pare and contrast RLPP to previous state-of-the-art meth-
ods on several classification tasks, including gesture recog-
nition, texture classification and person re-identification.

5.1. Synthetic Data

For the synthetic data, we consider a multi-class clas-
sification problem over Symj. Since we are interested in
contrasting tangent-based analysis with the proposed ap-
proach, we considered several classification problems on
the identity tangent space (the space created by considering
the identity matrix as the pole or centre of projection).

We randomly generated 16 classes over the identity tan-
gent space where the samples in each class obey a normal
distribution. Then all the generated samples were mapped
back to the manifold using the exponential map. By fix-
ing the mean of each class and increasing the class variance
we created several classification problems with increasing
difficulty.

Fig. 2 demonstrates that RLPP obtains superior perfor-
mance when compared with tangent-based inference. We
note that by increasing the class variance, samples of dif-
ferent classes are intertwined which leads to a decrease in
recognition accuracy.

5.2. Gesture Recognition

For the hand-gesture recognition task, we used the Cam-
bridge hand-gesture dataset [16] which consists of 900 im-
age sequences of 9 gesture classes. Each class has 100 im-
age sequences performed by 2 subjects, captured under 5
illuminations and 10 arbitrary motions. The 9 classes are

! Matlab/Octave source code for the proposed method is available at
http://itee.uqg.edu.au/~ugmharal
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defined by the 3 primitive hand shapes and 3 primitive mo-
tions. Each sequence was recorded at 30 fps with a resolu-
tion of 320 x 240, in front of a fixed camera. The gestures are
roughly isolated in space and time. See Fig. 3 for examples.
We follow the test protocol defined in [1 6], where sequences
with normal illumination are considered for training while
tests are performed on the remaining sequences.

The descriptor for a video sequence is obtained by com-
puting the covariance matrix of frame descriptors. In a sim-
ilar manner to [22], each frame descriptor is obtained by
dividing the image into nr rectangular regions and concate-
nating the descriptors from each region. There is no overlap
between adjacent regions. Each region is further split into
small (8 x 8) overlapping blocks. The amount of overlap be-
tween two adjacent blocks is n, pixels. The region descrip-
tor is simply the average of the descriptors of the region’s
blocks.

The descriptor for each block was obtained as follows.
First, each block is normalised to zero mean and unit vari-
ance, to reduce the undesired effects of illumination varia-
tion. The 2D Discrete Cosine Transform (DCT) [10] is then
used as a straightforward dimensionality reduction tech-
nique. Specifically, the top p low frequency components
are retained as the block descriptor, not including the 0-th
DCT component (as it has no information due to the nor-
malisation).

Based on preliminary experiments, we used nr=9, n,=4
and p=15. Note that while the DCT typically decorrelates
image data at the block level, there is still correlation among
features due to the concatenation of the region descriptors.

As per [16] we report the recognition rates for the 4 illu-
mination sets. The proposed method was compared against
Riemannian geodesic distance, Tensor Canonical Correla-
tion Analysis (TCCA) [16] and principal angle [29]. TCCA,
as the name implies, is the extension of canonical correla-
tion analysis to multiway data arrays or tensors. Canonical
correlation analysis and principal angles are standard meth-
ods for measuring the similarity between subspaces [13]. If
A € R™™ and B € R¥*"2 are two linear subspaces in R?
with minimum rank » = min(rank(A, B)), then r unique
principal angles can be defined between A and B via:

) — Ty.
cos(0;) = aiegl,a;ieB a; b; (13)
subject to ala;=blb;=1, ala;=blb; =0, i #j. The

principal angle between the two subspaces is 6; € [0,7/2],
with ¢ € {1,2,---,r}. In line with previous literature
[13, 14, 16, 29], we created the subspaces by applying SVD
on grey-level images. To compare subspaces, nearest neigh-
bour classification over the first principal angle was em-
ployed. The results, presented in Table 1, show that the
proposed approach outperforms both the TCCA and princi-
pal angle methods by a notable margin.


http://itee.uq.edu.au/~uqmhara1
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Figure 3. Examples of actions in the Cambridge hand-gesture
video dataset [16].

Method Setl Set2 Set3 Set4 Overall
Geodesic 66 79 82 85 78.00,0=8.37
PA [29] 81 74 78 7 77.50,0=2.89
TCCA[l6] 81 81 78 86 81.50,0=3.32
RLPP 86 86 85 88 86.25,0=1.26
Table 1. Average correct recognition rate for the hand-

gesture recognition task using geodesic distance, principal an-
gle (PA) [29], Tensor Canonical Correlation Analysis (TCCA) [16]
and the proposed approach. In the last column, o represents stan-
dard deviation.

5.3. Texture Classification

In this experiment, we performed a classification task
using the Brodatz texture dataset [2 1], which contains 111
texture images of size 640 x 640. Examples are shown in
Fig. 4.

Each image was divided into four equal parts of size
320 x 320. From each image, we used two parts for train-
ing and the remaining two parts for testing. To create a
Riemannian manifold, from each 320 x 320 image, we ex-
tracted one hundred rectangular regions of random cen-
tre, height and width. We confined the width and height
of the regions to be in the range of [16,128]. For every
pixel I (z,y) in a region we then computed a feature vec-

tor F(z,y)= [I (@), |8L].]8L), |24 ot ] Each region is
then described by a 5 X 5 covarlance descrlptor of these
features.

In the test protocol, for any covariance descriptor we find
the nearest neighbour descriptor from the training set and
assign the corresponding image class to it. As a result, each
320 x 320 image is described by one hundred of such labels.
The class of each image was obtained using a majority vot-
ing rule. Since there are 111 x 2 x 100 = 22,200 points in
the training set, generating affinity graphs is computation-
ally intensive. Instead, we randomly select 10 samples from
each texture class and train the model using the smaller sub-
set of 10 x 100 points. Upon deriving the Laplacian space,
we projected both the training and testing sets into the new
space.
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Representative examples from the Brodatz texture

Figure 4.
dataset [21].

Method Performance
Maximum response-M8 [9] 94.64%
Leung-Malik [17] 97.32%
Covariance descriptor 95.49%
Geodesic 97.77%
RLPP 99.54%

Table 2. Average correct recognition rate for the texture classifi-
cation task using maximum response filter bank) [9], Leung-Malik
filter bank [17], covariance descriptor, Riemannian geodesic dis-
tance and the proposed RLPP approach.

State-of-the-art methods for texture classification utilise
the notion of bag of words [22, 31]. More specifically, tex-
tons can be considered as visual words derived through clus-
tering a feature space. The feature space is built from the
output of a filter bank applied at every pixel, with the meth-
ods mainly differing in the employed filter bank. Leung-
Malik (LM) [17] and maximum response (MR) [9] filter
banks have been shown to be quite successful over the Bro-
datz dataset [27] and hence are considered here.

The LM filter bank is a combination of 48 anisotropic
and isotropic filters and produces a 48 dimensional feature
space. The MR filter bank is derived from both rotationally
symmetric and oriented filters. To achieve rotational invari-
ance, the responses of the oriented filters are aggregated by
a maximum operation. The feature space is 8 dimensional.

Results in Table 2 indicate that the proposed RLPP ap-
proach obtains the highest recognition accuracy.

5.4. Person Re-identification

For the person re-identification task, we used the modi-
fied ETHZ dataset [23]. The original ETHZ was captured
using a moving camera [6], providing a range of variations
in appearance of people. The dataset is structured into three
sequences. Sequence 1 contains 83 pedestrians (4,857 im-
ages), Sequence 2 contains 35 pedestrians (1,936 images),
and Sequence 3 contains 28 pedestrians (1,762 images). See
Fig. 5 for examples.



We downsampled all images to 64 x 32 pixels. For each
subject we randomly selected 10 images for training and
used the rest for testing. Random selection of training and
testing data was repeated 20 times to obtain reliable statis-
tics. To describe each image, the covariance descriptor was
computed using the following features:

_ / ’ / 1" " 1"
Fyy= [x) Y, Ra,y, Ga,y, Ba,y, Rx,y7 Gw,y: Bac,y’ R:c,y’ Gx,y’ Bx,y]

where x and y represent the position of a pixel, while
Rey, Goy and B., represent the corresponding colour

information. Furthermore, ¢C, = H% ,‘%] and
Ciy= [ 2ql, %273] represent the gradient and Lapla-

cian for colour C, respectively.

We compared the proposed RLPP method with Par-
tial Least Squares (PLS) [23], Histogram Plus Epitome
(HPE) [1], and Symmetry-Driven Accumulation of Local
Features (SDALF) [7]. The results are shown in Fig. 6
in terms of recognition rate, by the Cumulative Matching
Characteristic (CMC) curve. The CMC curve represents
the expectation of finding the correct match in the top n
matches. The proposed method obtains superior perfor-
mance on Sequences 1 and 2, while matching the SDALF
method on Sequence 3.

6. Main Findings and Future Directions

Inference problems on Riemannian manifolds are typi-
cally tackled by embedding the manifolds into Euclidean
spaces. The general practice in this school of thought is to
use tangent spaces for embedding. In this paper we pro-
posed a new approach for making inference method on Rie-
mannian manifolds. Specifically, we devised a Riemannian
pseudo kernel and employed it for embedding Riemannian
manifolds into the familiar RKHS space. To demonstrate
the benefits of embedding into RKHS, we recast a local-
ity preserving projection approach from Euclidean spaces
to Riemannian manifolds.

When compared to several state-of-the-art methods, ex-
periments on gesture recognition, person re-identification
and texture classification indicate that the proposed kernel-
based embedding approach leads to considerable improve-
ments in discrimination accuracy.

Future avenues of research include exploring clustering
through kernel analysis on Riemannian manifolds. This is
particularly useful for creating visual dictionaries over Rie-
mannian manifolds and can open new paths to adapt the
ideas of sparse representation [5] to non-Euclidean spaces.
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Figure 5. Examples of pedestrians in the ETHZ dataset [6].

100

ETHZ-Seq. 1
95
>
%)
o
3 90 -
% W
c
2
x
o 85 -
g *
&
=A-RLPP
% —i#-HPE
~»¢-SDALF
=@-PLS
75
1 2 3 4 5 6 7
100
ETHZ-Seq. 2
95
>
o
[
3
8 920
©
c
L
=
5 8
o
o
Q
(4
80
75
ETHZ-Seq. 3
100 1 —
> 95
%]
o
=
3
© 90
c
2
=
c
D 85
o
Q
[+4
80
75 + T T T T T ]
1 2 3 4 5 6 7
Rank

Figure 6. Performance comparison on Sequences 1 through 3 of
the ETHZ dataset, in terms of Cumulative Matching Characteristic
curves. The proposed RLPP method is compared with Histogram
Plus Epitome (HPE) [1], Symmetry-Driven Accumulation of Lo-
cal Features (SDALF) [7] and Partial Least Squares (PLS) [23].
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