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Abstract

Recently, there has been a growing interest in developing
Computer Aided Diagnostic (CAD) systems for improving
the reliability and consistency of pathology test results. This
paper describes a novel CAD system for the Anti-Nuclear
Antibody (ANA) test via Indirect Immunofluorescence proto-
col on Human Epithelial Type 2 (HEp-2) cells. While prior
works have primarily focused on classifying cell images ex-
tracted from ANA specimen images, this work takes a fur-
ther step by focussing on the specimen image classification
problem itself. Our system is able to efficiently classify spec-
imen images as well as producing meaningful descriptions
of ANA pattern class which helps physicians to understand
the differences between various ANA patterns. We achieve
this goal by designing a specimen-level image descriptor
that: (1) is highly discriminative; (2) has small descriptor
length and (3) is semantically meaningful at the cell level.
In our work, a specimen image descriptor is represented
by its overall cell attribute descriptors. As such, we pro-
pose two max-margin based learning schemes to discover
cell attributes whilst still maintaining the discrimination of
the specimen image descriptor. Our learning schemes dif-
fer from the existing discriminative attribute learning ap-
proaches as they primarily focus on discovering image-
level attributes. Comparative evaluations were undertaken
to contrast the proposed approach to various state-of-the-
art approaches on a novel HEp-2 cell dataset which was
specifically proposed for the specimen-level classification.
Finally, we showcase the ability of the proposed approach
to provide textual descriptions to explain ANA patterns.

1. Introduction

The application of image analysis for various routine
clinical pathology tests has been growing in recent years [7,
10]. When incorporated into subjective analysis from sci-
entists, these can potentially not only lower test turn around
time but also increase test result reliability and consistency
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Figure 1. Examples of cell-level discriminative attributes found by
our proposed approach for some ANA patterns. Each pattern is
described using two cell types: interphase cell (left); mitotic cell
(right).

across laboratories [7, 21].
The common way of identifying the existence of con-

nective tissue diseases is via the Anti-Nuclear Antibody
(ANA) test using Indirect Immunofluorescence (IIF) pro-
tocol on Human Epithelial type 2 (HEp-2) cells [13]. This
is due to its high sensitivity and the large range expression
of antigens. Unfortunately, the protocol is time consuming,
labour intensive and subjective [2, 15] leading to low repro-
ducibility and large inter/intra- personnel/laboratory vari-
ations [17]. One possible solution is to apply Computer
Aided Diagnostic (CAD) systems for automated classifica-
tion of ANA IIF digitally captured images.

Despite the large interest shown recently in the literature,
most of the existing works only focus on the early steps of
the CAD system, that is cell-level classification [7, 21, 23,
22, 5, 24]. Whilst, some methods which go beyond this
scope assume that the specimen-level pattern can be simply
estimated from the most dominant cell-level pattern [17].
As each specimen-level image consists of a set of cells, ide-
ally a CAD system should be able to extract more useful
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Figure 2. Sample images from the proposed dataset

information from the cells distribution to infer the speci-
men image pattern (refer to Fig. 2 for examples of specimen
images). Furthermore, the existing systems do not provide
meaningful information as to why an ANA pattern differs to
the others. Having meaningful information such as textual
description is of interest in this area since often a pattern has
various descriptions amongst physicians [20].

One way to address these issues is to learn discrimina-
tive and semantically meaningful descriptors. Each element
of the descriptor defines the existence/absence of a specific
inherent property/characteristics in an image. For instance,
an image containing a car may have some properties such as
has a wheel, is metallic, has windows and doors [6]. These
properties are popularly known as image attributes [6].

There is a growing interest to develop attribute-based
approach for image classification [6, 11, 1, 16, 14]. For
instance, Ferrari and Zisserman proposed a probabilistic
generative model of visual attributes [6]. Lampert et al.
reported excellent results of the Direct Attribute Predic-
tion (DAP) approach in a zero-shot learning problem [11].
Parikh et al. extended the notion of image attribute into rel-
ative attribute which is related to adjective of a noun such
as larger and more open space [14].

An image attribute detector is essentially a binary clas-
sifier which determines the presence or absence of an im-
age property. As such, each attribute needs a training set
which may be expensive to acquire for our problem do-
main due to the limited number of domain experts. It is
also almost impossible to use the Amazon Mechanical Turk
service [14, 11] to acquire the training labels. Therefore,
it is desirable to automatically discover the smallest set of
discriminative image attributes wherein the domain experts
can name them. To that end, one could apply ideas pro-
posed in [1, 16] to discover discriminative image attributes.
Here, the attribute classifiers are jointly learned with the im-
age classifier in the max-margin framework. Nevertheless,
these approaches are mainly focussed on image attributes,
whereas in our work, the system needs to discover cell-level
attributes which, when summarised into the specimen-level
descriptor, will be highly discriminative. Henceforth, the

cell attributes must be indirectly discovered via learning a
discriminative specimen image descriptor.

The concept of discovering discriminative image at-
tributes is also related to hashing techniques [3, 9, 8, 19].
However, the descriptors resulting from these techniques
are not necessarily semantically meaningful. For instance
the spectral hashing approach aims to generate a set of bi-
nary codes which are short, easy to compute and maps sim-
ilar items to similar binary codewords [19]. To that end,
the approach constraints that each bit has a 50% chance of
being zero and one and different bits independent to each
other. These are much weaker constraints to discover se-
mantically meaningful code.

Contributions The aim of the present work is to devise
an algorithm which learns image descriptors for ANA IIF
specimen image classification problem with three proper-
ties: (1) highly discriminative; (2) semantically meaning-
ful at cell level and (3) having short descriptor length. We
achieve this by proposing two learning schemes for dis-
covering cell-level attributes through a discriminative learn-
ing framework. In contrast to previous approaches [1, 16]
which learns discriminative image-level attributes, our ap-
proach learns cell-level attributes where their values can
be used to construct discriminative image-level descriptors.
Our theoretical results show that under a certain condition,
it is possible to devise solutions based on image-level dis-
criminative attribute learning for solving the posed problem.
Finally, we further showcase (refer to Fig. 1 for some exam-
ples of discovered meaningful cell attributes) that a textual
description can be generated from the learned cell-level at-
tributes and shares similarities to the description from ex-
perts. We evaluated all the approaches on the new HEp-2
cell dataset proposed for the specimen image classification
problem. To our knowledge this is the first comprehensive
dataset constructed for this purpose.

We continue our discussion as follows. Section 2 dis-
cusses the ANA IIF specimen-level classification problem.
The proposed learning schemes are described in Section 3.
We present the experiment and results in Section 4. Finally,
the main findings and future direction are discussed in Sec-
tion 5.

2. Problem definition
An ANA IIF specimen image I is represented by the

three-tuple {I,M , δ} which consists of: (i) the Fluo-
rescein Isothiocyanate (FITC) image channel which car-
ries pattern information I; (ii) a binary cell mask im-
age M which are extracted from the 4’,6-diamidino-2-
phenylindole (DAPI) image channel; (iii) the fluorescence
intensity δ = {weak, strong}. The goal is to construct a
classifier which classifies a specimen image into one of the
known classes.

Our problem differs from [7, 23, 22, 5, 24] in the way



that these works focus on classification of individual cell
images extracted from specimen images; our main attention
is on the specimen image classification problem.

3. Discovering cell attributes
The goal of the present work is to discover cell-level

attributes which can be used to form a discriminative
specimen-level descriptor. Once all cells are extracted from
a specimen image using its mask, each cell image is di-
vided into J regions from which a regional descriptor is
extracted. For clarity, we defer the discussion of how the
regions are divided until Section 4.2. After the cell has
been divided into regions, we derive the cell-level attributes
from the extracted regional descriptor. The specimen im-
age descriptor is then formed by concatenating the overall
cell attributes from all regions. Let zi ∈ RP be the P di-
mensional specimen-level descriptor of the i-th specimen
image, zi = [ĥi,1 . . . ĥi,J ]. Each ĥi,j ∈ Rb represents the
overall cell-level attribute descriptor extracted from the j-th
region:

ĥi,j =
1

Ni,j

Ni,j∑
c=1

hi,j,c (1)

where Ni,j is the number of cells extracted from the spec-
imen image for j-th region; hi,j,c ∈ Rb is the cell-level
attribute descriptor extracted from the j-th region in the c-
th cell; b is the number of cell attributes extracted from j-th
region.

The above equation suggests that the specimen image is
represented by the average of the cell-level attributes. This
approach differs from [17, 7] wherein each image is repre-
sented as the dominant pattern of extracted cells. We will
later show in the experiment that our strategy is consider-
ably more effective.

Inspired from [1], we define the value of each element of
the cell-level attribute descriptor hi,j,c as the output of a set
of basis linear classifiers as follows:

hi,j,c = A>j xi,j,c (2)
where each column of Aj ∈ Rd×b is the model parame-
ter for a single basis classifier; xi,j,c ∈ Rd is the regional
descriptor extracted from j-th region in c-th cell.

The value of each element in hi,j,c indicates the presence
(+) or absence (−) of a particular cell-level attribute. Here,
each attribute classifier will be trained by maximising the
margin between the positive and negative samples, thereby,
imposing an indirect constraint that an attribute should pro-
vide a meaningful concept (i.e. the concept discriminating
positive and negative samples).

We learn both the image-level classifier and the cell-level
attribute basis classifiers simultaneously over all variables.
To this end, we propose two learning schemes via the one-
versus-all linear SVM framework. The first scheme, de-
noted All Region Cell Attribute Descriptor (ARCAD), is

designed to discover discriminative cell-level attributes ex-
tracted from each region at the same time. On the other
hand, the second scheme, namely Cell Regional Attribute
Descriptor (CRAD), is proposed to discover the most dis-
criminative cell-level attributes for each individual region.

Let G ∈ {(Ii,yi)}Ni=1 be the training sets wherein each
image Ii has label vector yi ∈ {−1,+1}K encoding the
class label from K possible patterns. For instance, if Ii be-
longs to the first class, then yi,1 = +1 and −1 for the rest
of its elements. Let X ∈ {{xi,j,1}Jj=1 . . . {xi,j,Ni,j}Jj=1}
be the set of extracted regional descriptors of the specimen
image Ii.

3.1. All Region Cell Attribute Descriptor (ARCAD)

The training objective for ARCAD is defined by:

min
w1...K ,b1...K

K∑
k=1

{
1

2
‖wk‖2+

λ

N

N∑
i=1

`
[
yi,k(bk +w>k zi

]}
(3)

where wk, bk and λ are the hyperplane, bias term and reg-
ularisation parameters for each SVM, respectively; `[·] is
the hinge loss function. If we expand the zi in the above
equation by substituting Eqn. 1 into 2, it becomes:

min
w1...K ,b1...K ,A1...J

K∑
k=1

{
1

2
‖wk‖2+

λ

N

N∑
i=1

`

yi,k(bk +

J∑
j=1

wk,j

Ni,j

Ni,j∑
c=1

A>j xi,j,c

 (4)

where wk,j is the parameters for k-th linear SVM of the
j-th region 1. Minimising the above equation requires to
learn all the parameters simultaneously. This includes the
specimen image one-versus-all SVMs as well as the cell-
level attribute basis classifiers {Aj}Jj=1.

We note that although the Eqn. 4 shares similarities to
the objective function discussed in the PiCoDes approach
of [1], applying the solution proposed in PiCoDes to solve
the above equation is not straightforward. This is be-
cause in contrast to PiCoDes, the above equation is not
aimed at learning discriminative image-level attributes. In
the present work, the image-level descriptor is formed by
concatenating the overall cell-level attribute descriptors ex-
tracted from cell regions.

For completeness, we present the objective function of
PiCoDes which discovers discriminative image-level at-
tributes:

min
w1...K ,b1...K ,A1...J

K∑
k=1

{
1

2
‖wk‖2+

λ

N

N∑
i=1

`

[
yi,k(bk +

P∑
p=1

(
wk,pA

>
p ui

)]}
(5)

1Here wk,j ∈ R1×b is a sub-vector of wk = [wk,1 . . .wk,J ].



where P is the number of image-level attributes; wk,p is the
p-th parameter value of the k-th SVM model 2; ui is the
i-th image-level descriptor. Note that ui is not the same as
zi as the former is image descriptor extracted using various
image features.

To address our problem, we present the following propo-
sition.
Proposition 3.1 The problem presented in Eqn. 4 is equiv-
alent to Eqn. 5 if and only if zi is formed by ĥi,j de-
fined in Eqn. 1 and ui = [x̂i,j . . . x̂i,J ] where x̂i,j =
1

Ni,j

∑Ni,j

c=1 xi,j,c

The proof for Proposition. 3.1 is presented in the Ap-
pendix. The above proposition allows us to design a
tractable solution for Eqn. 4 using the existing PiCoDeS so-
lution for Eqn. 5.

3.2. Cell Regional Attribute Descriptor (CRAD)
The ARCAD objective function learns cell-level at-

tributes for all regions at the same time. Another alterna-
tive is to learn discriminative cell-level attribute from each
region exclusively. To this end, we propose an objective
function consisting of the summation of E(·), defined by:

min

J∑
j=1

E
(
w

[j]
1...K ; b

[j]
1...K ;Aj ; {(ĥi,j ,yi)}

N
i=1

)
(6)

where E(·) is the objective function for learning the basis
classifier for each cell-level attribute extracted from each
region:

E
(
Aj ; {ĥn,j}Nn=1

)
=

K∑
k=1

{
1

2
‖w[j]

k ‖2+λ
[j]

N

N∑
i=1

`
[
yi,k(b

[j]
k +w

[j]>
k ĥi,j

]}
(7)

where w
[j]
k and b

[j]
k are the k-th SVM parameters of the j-

th region cell-level attributes. Similar to Eqn. 4, the above
equation can be expanded by substituting Eqn. 1 into 2. We
get:

E
(
Aj ; {ĥn,j}Nn=1

)
=

K∑
k=1

{
1

2
‖w[j]

k ‖2+

λ[j]

N

N∑
i=1

`

yi,k(b[j]k +
w

[j]>
k

Ni,j

Ni,j∑
c=1

A>j xi,j,c

 (8)

This brings us to similar challenge as posed in Eqn. 4 which
can be solved by using Proposition. 3.1. We note that the
purpose of Eqn. 8 is only to train the cell attribute basis
classifiers from each region individually. Once these are
trained, we train the one-versus-all SVM classifiers for the
specimen-level classification.

2Note that wk,p is a scalar value. wk,p differs from wk,j which is a
sub-vector

3.3. Optimisation algorithm

We present the optimisation algorithm used to solve
Eqn. 5 for solving Eqn. 4 and 8. The algorithm uses block
coordinate descent alternating between optimising the SVM
parameters and the attribute basis classifiers.

3.3.1 Learning specimen image SVM parameters

When Aj is fixed, zi can be determined. Thus, the prob-
lem is reduced to linear a SVM learning problem for both
ARCAD and CRAD.

3.3.2 Learning attribute basis classifiers

More elaborate steps are required to learn individual at-
tribute basis classifiers. It has been shown in [1] that when
wk and bk are fixed, updating each cell-level attribute base
classifier from each region can be done via learning the
upper bound of the objective function which resembles to
learning a linear SVM classifier by minimising the sum of
weighed mis-classifications. Our objective function is: 3

Ê(ab) =

N∑
i=1

vi`(qiabx̂i,j) (9)

where x̂i,j is the average of the low level features extracted
from the j-th region of image Ii; ab is the base classifier
model of the b-th attribute; qi ∈ {−1,+1} and vi ∈ R+ are
known values computed via:

qi =

∣∣∣∣∣
K∑

k=1

`(αi,k,b + βi,k,b)− `(βi,k,b)

∣∣∣∣∣ (10)

vi = sgn

(
K∑

k=1

`(αi,k,b + βi,k,b)− `(βi,k,b)

)
(11)

where α and β are defined by: αi,k,b ≡ yi,kwk,b and
βi,k,b ≡ yi,kbk +

∑
b′ 6=b yi,kwk,b′a

>
b ui

The main difference between CRAD and ARCAD is that
CRAD uses the SVM parameters of each region (i.e. w

[j]
k

and b
[j]
k ) to update the base classifiers, whereas ARCAD

uses the overall SVM parameters. In other words, in AR-
CAD, the information learned from other regions are used
to optimise Eqn. 9, while this is not the case for CRAD.

4. Experiment
We first describe the novel specimen-level HEp-2 cell

image classification dataset and experiment settings. The
proposed approaches are compared to various notable hash-
ing techniques [3, 9, 8, 19] as well as recent discrimina-
tive attribute learning methods [16, 1]. The proposed ap-
proaches are also compared to the existing methods for

3Readers are encouraged to read [1] for further details.



specimen-level image classification in this domain such as
the Multiple Expert System (MES) [17]. Finally, we show-
case the ability of the discovered cell-level attributes to help
physicians in describing the ANA pattern classes.

4.1. Dataset

We propose a new dataset 4 to serve our goal because
the existing benchmarking datasets such as SNPHEp-2 [23],
ICIP2013 5 and ICPR2012Contest [4] are primarily fo-
cussed on the cell-level classification problem. Although
the ICPR2012Contest dataset provides specimen images,
the number of images for each train and test are insufficient
for this study (i.e. only 14 images for each train and test
classified into six classes).

The proposed dataset was obtained from 262 patient
sera in 2013. The patient sera were diluted to 1:80 dilu-
tion. The prepared specimen was then photographed using a
monochrome high dynamic range cooled microscopy cam-
era fitted on a microscope. In total there were 262 specimen
images classified into eight classes: homogeneous, speck-
led, nucleolar, centromere, nuclear membrane (NuMem),
cell cycle dependent (CCD), mitotic spindle (MitSp) and
golgi aparatus (golgi).

Each specimen image contains a collection of interphase
and mitotic cells which are important for the specimen-level
classification (refer to Fig. 2). The mitotic cells are the
HEp-2 cells undergoing the mitosis phase. In this phase
each cell divides itself into two separate individual cells.
The mitotic cells are of importance as they produce a set of
antigens which are either less concentrated or undetectable
in the interphase stage. Due to this fact, experts consider the
pattern of both interphase and mitotic cells in classifying an
ANA specimen.

Five-fold validations of training and test were created by
randomly selecting from the pool of images. Specifically,
we randomly selected approximately 130 images from the
image pool for each fold. Then, the selected images were
further divided into two equally sized sets for training and
testing (i.e. approximately 75 images for each set). To our
knowledge this is the first dataset to offer a reasonable num-
ber of data samples for benchmarking specimen-level clas-
sification approaches. We plan to release the dataset by the
end of 2014.

4.2. Experiment settings

Although one could use any cell-level descriptor, in the
present work, we use the bag of words descriptor with
Cell Pyramid Matching (CPM) structure recently proposed
in [22] due to its robustness to various laboratory settings.
Specifically, we divide each cell into an inner region, which

4Available at http://www.itee.uq.edu.au/sas/node/69
5http://nerone.diiie.unisa.it/

contest-icip-2013/index.shtml

covers the cell content and an outer region, which contains
information related to cell edges and shape. In addition,
a descriptor extracted from the whole cell region is also
used. Thus, there are three regional descriptors extracted
from each cell. As there are two cell types: interphase and
mitotic cells, we use six regions in total (three regions of
each type). Note that, we only consider the regional de-
scriptors extracted from the same cell type when computing
x̂i,j as well as ĥi,j .

Once the regional descriptors are extracted, we lift up
the each descriptor into a higher-dimensional space approx-
imating the histogram intersection kernel by using the ex-
plicit feature maps proposed by Vedaldi and Zisserman [18].
Specifically we map the original regional descriptor into the
space three times larger by setting the parameter n in [18]
to 1. We opt to use the lifted space of the histogram inter-
section kernel as bag of words histogram comparisons are
generally best to be done under histogram intersection ker-
nel as suggested in [1]. The lifted-up descriptor will be the
regional descriptor for each xi,j,c.

Although it is possible to vary the number of attributes
extracted from each region, we choose to use the same num-
ber of attributes for all regions in order to reduce the total
number of combinations.

4.3. Evaluation of different descriptors

We first contrast the proposed approaches to the re-
cent hashing methods such as: Locality-Sensitive Hashing
(LSH) [3], Kernelised LSH (KLSH) [9], Spectral Hashing
(SPH) [19] and Iterative Quantization (ITQ) [8]. In addition
we also compare the proposed approaches to the recent dis-
criminative attributes learning: PiCoDeS [1] and Discrimi-
native Binary Code (DBC) [16].

All methods were trained and tested using the specimen-
level descriptor extracted with the setup previously de-
scribed. We used the unlifted regional descriptor in con-
junction with the histogram intersection kernel for KLSH.

The results are presented in Fig. 3. Both ARCAD and
CRAD outperform all other methods even when small num-
bers of attributes are used. This suggests that the proposed
approaches are highly discriminative even with small code
length. The learning schemes successfully discover the
essential cell attributes which are highly discriminative to
form specimen image descriptor. We note that both LSH
and KLSH require longer code length to achieve similar
performance to the proposed approaches. This is consis-
tent with the finding reported in previous works suggesting
that LSH requires longer code length to achieve good per-
formance [9]. In our case having a small code length is ad-
vantageous since the experts require less time to name the
discovered attributes.

It is noteworthy to mention that the proposed approaches
outperform significantly PiCoDeS as well as DBC which

http://www.itee.uq.edu.au/sas/node/69
http://nerone.diiie.unisa.it/contest-icip-2013/index.shtml
http://nerone.diiie.unisa.it/contest-icip-2013/index.shtml
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were specifically designed to discover the discriminative at-
tributes. Both PiCoDeS and DBC consider attribute value
in binary space. Furthermore, the DBC learning scheme op-
erates in the binary space which is intrinsically more com-
plex. In our case, we consider real attribute values (Refer
Eqn. 2). In the light of this fact, we argue that presenting
attribute value as a the real number is more expressive than
a binary value ( i.e. 0 or 1).

In the second evaluation we contrasted the proposed ap-
proaches to existing methods for HEp-2 specimen image
classification. The most common approach for classifying
specimen images is to use the dominant pattern of the in-
terphase cells [7, 22, 5, 24]. Here, we call this baseline.
Another approach, here denoted Multiple Expert System

(MES), is to train individual classifier for each class (i.e. one
interphase cell classifier for each class) and use the classi-
fication reliability score to do weighted voting [17]. We
implemented both baseline and the MES approach.

We also implemented the approach in [12] which pro-
poses the concept of Object Bank. Technically, we train
k one-versus-all classifiers. Given a cell image, we apply
all the k classifiers and consider the k classification output
scores as the object bank representation of the cell. The ob-
ject bank representation of a specimen image is obtained by
averaging the cell-level object bank representation. Here,
we trained two sets of classifiers: (1) eight classifiers trained
on interphase cells (i.e. one classifier for each pattern class),
denoted Object bank interphase; (2) sixteen classifiers con-
sisting of eight classifiers trained on the interphase cells and
eight on the mitotic cells, denoted Object bank both.

Fig. 4 presents the evaluation results. The proposed ap-
proaches significantly outperform all other methods. We
note that the MES has poor performance which contradicts
what was reported in [17]. Upon a closer look we found
that some classes such as Mitotic Spindle do not have spe-
cific characteristics on their interphase cells. Henceforth, it
is difficult to train a reliable cell classifier rendering much
lower reliability score. In other hand, traditional voting
(i.e. the baseline) has much better performance as it only
counts the vote and does not consider the classification reli-
ability score. Furthermore, we found that combining the in-
formation extracted from both interphase and mitotic cells
is of importance. This can be observed from the fact that
there is a significant increase in Object bank performance
when information from both cell types is used.

4.4. Describing ANA pattern class

In this section we use the attributes discovered by the
proposed approaches to generate a textual description of the
eight ANA patterns. To that end, we use attributes trained
by CRAD as it gives the most consistent results in the pre-
vious evaluation. Specifically, we opt to use 32 attributes
extracted from inner and outer regions from both cell types.

We first selected the most frequently appearing cell-level
attributes from each pattern. From the selected set, we fur-
ther excluded the attributes which appear in at least more
than four classes. Finally, to name the cell attributes, we
presented each cell attribute to the domain experts who were
trained to read ANA by showing them both images classi-
fied as positive and negative by the attribute classifier. We
note that we presented the cell images in green colour which
is similar to the colour of an ANA specimen under a fluo-
rescent microscope. Since the attributes are extracted from
each cell region, we could ask more specific questions to the
experts in relation to each region (e.g. Please describe the
property appearing at the cell boundary). The experts could
opt not to name an attribute if they were not able to find any



Positive samples Negative samples

Figure 5. Example of successfully described attributes. from top
row to bottom: parts of chromosome are stained, golgi organelle
is stained, mitotic spindle staining.

consistent property in the positive cell images. Fig. 5 and 1
present some examples of cell attributes successfully iden-
tified by the experts.

Once the description for each class was generated, we
let the experts indicate the correctness of each text descrip-
tion. Fig. 6 presents the generated description of each pat-
tern. Most patterns could be reasonably described with mi-
nor errors or omissions in the description. The mitotic spin-
dle pattern was perfectly described with no errors or omis-
sions in the description. On the other hand, despite this
system being able to detect the important property of Golgi
(i.e. golgi organelle is stained), the system had more mis-
takes on Golgi than the other patterns. This is probably due
to the fact that the Golgi pattern has only one prominent
property.
5. Main Findings

The ANA test via Indirect Immunofluoresence protocol
has been the gold standard to identifying Connective Tis-
sue Diseases. Unfortunately the protocol is subjective, time
as well as labour intensive. Despite the growing interest in
this domain, prior works have primarily focused on clas-
sifying cell images extracted from specimen images. In
this work, we took a further step by addressing the speci-
men image classification problem. To this end, we designed
a specimen-level image descriptor to be: highly discrim-
inative; short in descriptor length as well as semantically
meaningful at cell level. We achieved this goal by proposing
two learning schemes which are based on the max-margin
framework. We later showed that under a certain condition,
discovering such an image descriptor is equivalent to dis-
covering discriminative image-level attributes.

We contrasted the proposed approaches to numerous
hashing techniques as well as discriminative attribute learn-
ing approaches on a new HEp-2 cell dataset. We found that
the descriptors trained by the proposed schemes outperform
the existing approaches with a much shorter code length.
The experiments also show that the proposed approaches
outperform the recent approaches presented in [17, 12, 22].
Furthermore, we found that the descriptors can be used to
provide a textual description of ANA patterns based on the
cell attributes.

Despite the fact that the proposed approaches are able to
discover semantically meaningful cell-level attributes, the
constraints used to achieve this are not explicitly imposed
in the proposed max-margin based training schemes. As
such, we will explore ways to make the constraints more
explicit and study the effect of the constraints on the learned
descriptor.
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Appendix
We show the proof of Proposition. 3.1 by deriving Eqn. 5
from Eqn. 4. We first rewrite Eqn. 4:

min
w1...K ,b1...K ,A1...J

K∑
k=1

{
1

2
‖wk‖2+

λ

N

N∑
i=1

`

yi,k(bk +

J∑
j=1

wk,j

Ni,j

Ni,j∑
c=1

A>j xi,j,c

 (12)

This equation can be rewritten as:

min
w1...K ,b1...K ,A1...J

K∑
k=1

{
1

2
‖wk‖2+

λ

N

N∑
i=1

`

yi,k(bk +

J∑
j=1

wk,jA
>
j

 1

Ni,j

Ni,j∑
c=1

xi,j,c


(13)

Let x̂i,j be the average of cell-level descriptor extracted
from j-th region x̂i,j = 1

Ni,j

∑Ni,j

c=1 xi,j,c, the equation can
be transformed into:

min
w1...K ,b1...K ,A1...J

K∑
k=1

{
1

2
‖wk‖2+

λ

N

N∑
i=1

`

[
yi,k(bk +

J∑
j=1

(
wk,jA

>
j x̂i,j

)]}
(14)

Finally, this can be rewritten into Eqn. 5, with ui =
[x̂i,j . . . x̂i,J ]:

min
w1...K ,b1...K ,A1...J

K∑
k=1

{
1

2
‖wk‖2+

λ

N

N∑
i=1

`

[
yi,k(bk +

P∑
p=1

(
wk,pA

>
j ui

)]}
(15)
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